Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.

May 21, 2021 0 Comments

Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.

A series of animal experiments was conducted to characterize changes in the complex impedance of chronically implanted electrodes in neural tissue. Consistent trends in impedance changes were observed across all animals, characterized as a general increase in the measured impedance magnitude at 1 kHz. Impedance changes reach a peak approximately 7 days post-implant. Reactive responses around individual electrodes were described using immuno– and histo-chemistry and confocal microscopy.
These observations were compared to measured impedance changes. Several features of impedance changes were able to differentiate between confined and extensive histological reactions. In general, impedance magnitude at 1 kHz was significantly increased in extensive reactions, starting about 4 days post-implant. Electrodes with extensive reactions also displayed impedance spectra with a characteristic change at high frequencies.
This change was manifested in the formation of a semi-circular arc in the Nyquist space, suggestive of increased cellular density in close proximity to the electrode site. These results suggest that changes in impedance spectra are directly influenced by cellular distributions around implanted electrodes over time and that impedance measurements may provide an online assessment of cellular reactions to implanted devices.


89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies.

The use of immuno-PET, the combination of PET with monoclonal antibodies (mAbs), is an attractive option to improve tumor detection and mAb quantification. The long-lived positron emitter (89)Zr has ideal physical characteristics for immuno-PET, such as a half-life of 3.27 d, which is compatible with the time needed for intact mAbs to achieve optimal tumor-to-nontumor ratios. Thus far, a major limitation in the use of (89)Zr has been the lack of suitable methods for its stable coupling to mAbs. In this article, practical protocols for reproducible isolation of highly pure (89)Zr and the production of optimal-quality mAb-(89)Zr conjugates are provided.
(89)Zr was produced by a (p,n) reaction on natural yttrium ((89)Y), isolated with a hydroxamate column, and used for labeling of premodified mAbs. mAbs were premodified with a novel bifunctional derivative of the chelate desferrioxamine B (Df) via a new linker chemistry. To this end, Df was initially succinylated (N-sucDf), temporarily filled with Fe(III), esterified by use of tetrafluorophenol, and then directly coupled to mAbs. Chimeric mAb (cmAb) U36, directed against head and neck cancer, was used for in vitro and in vivo evaluation. The in vitro stability of cmAb U36-N-sucDf-(89)Zr was assessed in human serum, and its in vivo behavior was evaluated by biodistribution and PET imaging studies in tumor-bearing nude mice. A cmAb U36-Df-(89)Zr conjugate containing a previously described succinimide ring-thioether unit in the linker was used as a reference.
(89)Zr was produced in large batches (6.5-13.5 GBq) and isolated with improved radionuclidic purity (>99.99%) and high yield (>94%). The Df-premodified mAbs gave (89)Zr-labeling efficiencies of 80% within 30 min, resulting in conjugates with preserved integrity and immunoreactivity. With respect to stability, the novel cmAb U36-N-sucDf-(89)Zr conjugate appeared to be superior to the reference conjugate. In vivo, the novel conjugate demonstrated selective tumor targeting, and on PET images obtained at 24, 48, and 72 h after injection of this conjugate, small tumors in the range of 19-154 mg were readily visualized.
Methods were developed for improved purification of the long-lived positron emitter (89)Zr. Moreover, a novel bifunctional Df chelate was synthesized for the reproducible coupling of (89)Zr to mAbs. The suitability of such conjugates to detect millimeter-sized tumors in xenograft-bearing nude mice was demonstrated.

Chemical structures and bioactivities of sulfated polysaccharides from marine algae.

Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

Leave a Reply

Your email address will not be published. Required fields are marked *